博客
关于我
tensorflow2版本学习教程1-mnist数据集手写字体
阅读量:141 次
发布时间:2019-02-28

本文共 683 字,大约阅读时间需要 2 分钟。

import tensorflow as tf# 载入并准备好 MNIST 数据集。将样本从整数转换为浮点数mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()x_train, x_test = x_train / 255.0, x_test / 255.0# 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数model = tf.keras.models.Sequential([  tf.keras.layers.Flatten(input_shape=(28, 28)),  tf.keras.layers.Dense(128, activation='relu'),  tf.keras.layers.Dropout(0.2),  tf.keras.layers.Dense(10, activation='softmax')])# 训练并验证模型model.compile(optimizer='adam',              loss='sparse_categorical_crossentropy',              metrics=['accuracy'])model.fit(x_train, y_train, epochs=5)model.evaluate(x_test,  y_test, verbose=2)

欢迎关注公众号:算法工程师的学习日志

转载地址:http://lrbc.baihongyu.com/

你可能感兴趣的文章
Nagios 3.0 Jumpstart Guide For Linux – Overview, Installation and Configuration
查看>>
nagios 实时监控 iptables 状态
查看>>
WAP短信格式解析及在Linux下用C语言实现
查看>>
nagios+cacti整合
查看>>
Nagios介绍
查看>>
nagios利用NSCient监控远程window主机
查看>>
nagios安装文档
查看>>
nagios服务端安装
查看>>
Nagios自定义监控脚本
查看>>
name_save matlab
查看>>
Nami 项目使用教程
查看>>
Nancy之基于Nancy.Hosting.Aspnet的小Demo
查看>>
NAND NOR FLASH闪存产品概述
查看>>
nano 编辑
查看>>
nanoGPT 教程:从零开始训练语言模型
查看>>
NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
查看>>
Nash:轻量级、安全且可靠的脚本语言
查看>>
NAS、SAN和DAS的区别
查看>>
NAS个人云存储服务器搭建
查看>>
NAS服务器有哪些优势
查看>>